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Abstract: А number of works devoted to chaotic dynamics in electronic circuits grows 
every year. An important task in this analysis is to identify chaotic states in a circuit or to 

purposefully excite chaotic oscillations. The scope of this study is to analyze Chua’s circuit 

with a cubic nonlinearity using Krot’s method of matrix decomposition into a state-space. 

In this method, the system of Chua’s nonlinear equations is expanded into a matrix series. 
As a result, linear, cubic and quadratic matrix terms are obtained. Numerical integration of 

these matrix terms makes it possible to estimate the influence of higher-order nonlinearities 

on the Chua’s circuit chaotic regime as well as to observe a chaotic attractor that restoring 

based on the linear, quadratic and cubic matrix terms. The study has been carried out using 
the Simulink-model, which can be implemented in embedded systems as a generator of 

chaotic signals. It is shown that the regime of hard self-excited oscillations leads to appear 

a double scroll chaotic attractor in the state-space. 

Keywords: Nonlinear dynamical system, Chua’s circuit, chaotic double-scroll attractor, 
matrix decomposition method, hard self-excited oscillations 

 
1    Introduction 

Chua’s circuit is one of the most studied chaotic generators. There is the number 

of researches devoted to the usage of this circuit as a physical device in “reservoir 

computing” approach or as an element of associative memory [1], however, for 

recording/decoding the output signals from Chua’s scheme just great resources 

are needed. The method for analysis of attractors of complex nonlinear dynamical 

systems (NDS) has been developed based on Krot’s decomposition matrix series 

into a state-space (a phase space) [2-9]. This paper shows that the matrix 

decomposition method can be used to analyze of Chua’s circuit as well. 
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a) b) 

Figure 1 – Chua’s circuit (a) and piece-wise linear characteristic (b) of the 

Chua’s nonlinear element rV  

Let us consider Chua’s circuit (see Fig. 1a) and the system of equations describing 

the circuit (which obtained using Kirchhoff's circuit laws in the paper [10]): 

( ( ))
dx

y x h x
dt

dy
x y z

dt

dz
y

dt





  

  

 

                                          (1) 

1 0 1

1
( ) ( )( 1 1)

2
h x m x m m x x      .                             (2) 

As known [10], chaotic dynamics can be observed when: 

0 11.143; 0.714;15.6; 28;m m                                 (3) 

The plot of the piecewise function ( )h x  is shown in Fig. 1b. This nonlinearity is 

commonly used in computer simulations of Chua’s circuit, but it is difficult to 

implement on real-world hardware as well as to analyze using the matrix 

decomposition method.  That is why we have to use a smooth nonlinearity like 

the one described in [11-16].  

In this work, the cube polynomial 
3 2( )p x Ax Bx Cx D                                              (4) 

is chosen as a nonlinear function to approximate the function ( )h x . 

Here coefficients , , ,A B C D  can be found to approximate the curve shown in Fig. 

1b. For good approximation four points are needed (see Table 1): 
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Table 1 – The points are chosen to approximate the nonlinear function ( )h x   

№ X ( 1cV  ) Y(
gI  ) 

1 -1 1.143 

2 0 0 

3 1 -1.143 

4 2 -1.857 

 
1 13 2 1 0

1 1 1 1

3 2 1 0

2 2 2 2

3 2 1 0
3

1

2

3 3 3 3

3 2 1 0
44 4 4 4

0.07151 1 1 1

0 0 0 1 0

1 1 4

1.143

0

11.143

1 7

1 1 - .21 5

8 4 2 1 .85 0

A X X X X

B X X X X

YC X X X X

YD X X

Y

X X

Y

 
          
         
           
         
         
         





(5) 

As can be seen from Eq. (5), only coefficients A  and  C  of the polynomial (4) 

are non-zero. Substituting ( )p x into (1) instead ( )h x  (2) we obtain the system of 

equations: 
3

1 2 1 1

2 1 2 3

3 2

u u A u C u

u u u u

u u

  



   


  
  

                                         (6) 

where ,   are control parameters, 1 2 3, ,u u u  are variables in the state space of 

Chua’s circuit.  

To use Krot’s method of matrix decomposition for analysis of Eqs. (6) the system 

of equations has to be rewritten in matrix notation:    

( , , , , )u f u A C   ,                                           (7a) 

where 

1

2

3

u

u u

u

 
 

  
  

; 

3

2 1 1

1 2 3

2
.

u A u C u

f u u u

u

  



  
 

   
  

                         (7b) 

The dependence of the vector function f


 on the variables * , 1, 2,3i i iu u v i  

has been considered in [4]. This dependence is true under the condition of the 

influence of small perturbations iv  when 
i iv u . Taking into account the 

mention above, we can see that the change of vector function (7b) is the following: 

 
*

( , , , , , )u f v u A C 


                                 (8a) 

where 
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2
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v
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v

 
 

   
 
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(8b) 

The change of the vector function can be fully described by means of linear, 

quadratic and cubic terms of matrix series [2]-[7]: 

* (1) (2) (3)

3 3 3 9 3 27

1 1
( , ) ( ) ( )( ),

2! 3!
x xf v u L v L v v L u v v v

                   (9) 

where (1)

3 3L  ,
(2)

3 9L   ,
(3)

3 27L   are matrix terms of the following form: 

*2

1

(1)

3 3

(3 ) 0

1 1 1 ;

0 0

x

A u C

L

  



  
 

  
  

                                  (10) 

*

1

(2)

3 9

6 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

x

A u

L

 
 

  
 
 

;                        (11) 

 
(3)

3 27

6 00000000000000000000000000
( ) 0 00000000000000000000000000 .

0 00000000000000000000000000

A
L u






 
  
  

             (12)  

and ...

k

v v v    is the  Kronecker’s thk  degree of a vector v , k =1,2,3, for 

example, 
2 2

1 1 2 1 3 3[ ... ]Tv v v v v v v v  .  

Computations based on the matrix decomposition (9)-(12) show that 
*2 * 2 3

1 1 2 1 1 1

1 2 3

2

(3 ) 6 6
1 1

0 0
2 6

0 0

A u C v v A u v A v

f v v v

v

    



         
     

          
          

          (13) 
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In equation (13), the variables of the system are 1 2 3, ,v v v , and the parameters are

, , ,A C  , as well as the stationary value *

1u of the first variable 1u  can be also 

considered as a parameter.  

Using the above results we are going to look at the processes leading to chaos 

states in the circuit with the aim to find conditions of chaos origin. 

 

2 Synthesis and analysis of the Chua’s circuit computational model 

based on the matrix decomposition method. 
Considerable attention is given to developing new methods for analyzing 

electronic circuits. The primary goal of the matrix decomposition method is to 

apply nonlinear analysis for estimating the influence of terms (1)

N NL   , 2

(2)

N N
L


 , 3

(3)

N N
L



… on circuit dynamics [2-7]. It allows us to use the matrix decomposition method 

as a base of the computational model to study the Chua’s system. For this purpose, 

let us look into Simulink-model (Figure 2) based on the system of equations (13) 

with the usage of the matrix decomposition method.  

 
Figure 2 – Simulink-model’s main blocks that represent three equations of 

system (13) based on the matrix decomposition and definition of initial values  

 

The computational model is consisting of several subsystems: initial values 

subsystem, subsystems for computation of values 2 3,v v  (second equation and 

third equation respectively), subsystems for computation of linear, quadratic and 

cubic terms of the matrix series. The latter subsystems are grouped under first 

equation label for computation of  1v  . The basic blocks of Simulink such as 

multipliers or integrators are used as well.  
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According to Eq. (5) the coefficients of the polynomial (4) have been found, 

moreover, 0B D  . However, the obtained set of coefficients is not only one 

possible set. Further smoothing of nonlinearity is allowed without losing of 

chaotic oscillations. Moreover, there exists a state in which chaotic oscillations 

can be observed under a wide range of values *

1u . For example, one possible set 

has been found during a number of simulations, when   0.002A  ,     1.3C   ,

28  , 15.6  . In this section, we investigate both sets of coefficients and 

influence of the value *

1u on the system dynamics (see Table 2).   

 

Table 2 The studied sets of parameters 

No. A C *

1u  

1 0.002 -1.3 -0.75 (chosen from Fig. 3) 

2 0.0715 -1.2145 -0.05 (chosen from Fig. 4) 

 

Figures 3 and 4 show dependence 1v  on *

1u . As a result of multiple simulations,  

each column of circles is a one-dimensional representation of two-dimensional 

attractor. As can be seen in Fig. 3, a chaotic state is observed on a wide range of 

values *

1u . For comparison, the second case (see Table 2 as well as Fig. 4), 

demonstrates the chaotic regime only in a narrow interval near the small value *

1u

.  

 
Figure 3 – The dependence of 1v on *

1u  for 0.002A and 1.3C    shows that 

chaotic behaviour exists under the wide interval near the values *

1u  
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Figure 4 – The dependence of 1v on *

1u  for 0.0715A and 1.2145C   shows 

that chaotic behaviour exists only near the narrow region *

1 2.3u  . 

Fig. 5 shows phase trajectories in the state space ( 1 2 3, ,v v v ) for both sets of 

parameters. The Chua’s attractor (also called the “double scroll” attractor) is 

observed in both cases. The simulation shows the significant influence of value 
*

1u  on the dynamics of Chua’s circuit built with the usage of the matrix 

decomposition method. 

 
 

a) b) 

Figure 5 – Variants of chaotic attractors in the first (a) and the second (b) cases 

(see Table 2) showing similar shapes and significant difference in amplitudes 
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a) b) 

Figure 6 – Dependences of variables 1 2 3, ,v v v  on simulation time in the first (a) 

and the second (b) cases (see Table 2) showing the influence of the degree of 

nonlinearity as well as value *

1u on the amplitude and the frequency of chaotic 

oscillations 

The described results show that application of the matrix decomposition method 

[2]-[7] for analysis of nonlinear electronic circuits like the Chua’s circuit allows 

getting new data about the dynamics of such systems. Moreover, this method 

makes it possible to estimate the influence of high order nonlinearities on a 

chaotic regime of circuits.  

The matrix decomposition method allows us to introduce a new parameter *

1u

influencing on system dynamics. It can be used for purposeful control of the 

system in applied tasks like reservoir computing [1] or cryptography.  

 

3   Spectrum analysis of chaotic oscillations in Chua’s electronic 

circuit in the context of Landau’s initial turbulence model and 

theory of Ruelle-Takens 

Like other generators, Chua’s circuit can generate oscillations with some 

frequency  under a wide range of parameters. However, finite continuous 

chaotic oscillations can be observed only with a specific balance of contributions 

of the linear (1)

N NL  , quadratic 2

(2)

N N
L


and cubic 3

(3)

N N
L


kernels of Krot’s matrix 

series into a whole system dynamics. The process of transition from periodic 
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oscillations with a single frequency to chaotic ones can be explained in full 

accordance with Landau’s initial turbulence model [17].  

Using the matrix decomposition method (9)-(13) with regard to Eq. (8a), (8b) let 

us rewrite an equation for change 1v  of the first component 1u  of the vector 

variable u in the Chua’s circuit state space:  

2 3
1 2 1 1 1( ) ,L L Lv с v v v v                           (14a) 

where coefficients are 

  2 2 ;с v v *2

13 ;L C A u     13 ;L A u   3 .L A 
         

(14b) 

Considered parameters are   0.002A  ,     1.3C   , 28  , 15.6   and 
*

1 0.75u    give us the following inequalities: 

*2

1(3 ) 0;L Au C                             (15a) 

13 0;L A u                                (15b) 

0,L A  
                             

 (15c) 

The obtained conditions (15a-c) fully coincide with conditions for hard self-

excited oscillations within the framework of Landau’s initial turbulence model 

[17]. It means that after the breakdown of the steady-state regime of fluid flow 

the same inequality (15а) is valid as well as Eq. (14a) is true up to third-order 

terms where L   is a decay factor, L  is a Landau constant, L   is a positive (or 

negative) constant. It should be mentioned that for the hard self-excited 

oscillations L must be only a positive constant.  In accordance with Landau’s 

model [17] proposed in 1944, a jump-like transition from the stationary regime of 

a nonlinear system to the nonstationary one leads to appear two extra frequencies 

1  and 2 . These frequencies define two cycles (double scroll) in the state-space 

of Chua’s circuit (see Fig. 5a, b). 

The results can be explained from the point of view of the Ruelle-Takens 

approach [18]. This theory was proposed in 1972 and developed in 1978 by 

Ruelle, Takens, and Newhouse (RTN theory) [19]. The RTN theory has 

significant scientific and historical value because for the first time it answered the 

question on Landau’s mechanism of turbulence arising [17]. According to 

Landau’s mechanism, an infinite number of Hopf bifurcations is required for 

turbulence origin [20]. Unlike the Landau’s model, within the framework of RTN 

theory, a small number of bifurcations is required for origin of the chaotic regime 

[19],[20]. 

Let us consider a dynamical system in stationary regime, for example, a laminar 

viscous flow within the framework of Landau’s model of initial turbulence. Let 

us suppose that under increasing the control parameter (the Reynolds number for 

a viscous flow) the stationary regime is losing stability and leads to the periodical 
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regime with oscillation mode. In this regime, the frequency 1  appears. The plot 

of the corresponding finite cycle in the state-space is shown in Fig. 7. Next, let us 

suppose that the same process can be repeated twice. As a result, three Hopf 

bifurcations could take place and three independent frequencies 1 , 2  and 3  

could arise. It means that the quasiperiodic mode with three frequencies is 

realized in the system. 

 

  

a) b) 

Figure 7 – Finite cycle in the state space (a) and periodogram of the signal 1v  

(b) showing a peak at 11 390 Hz, -45.17 dB 
 

In the state-space of a system, in accordance with Landau’s model of initial 

turbulence [17], a two-dimension attractor of the kind “torus” 2 corresponds to 

a quasi-periodic regime with two independent frequencies as well as a three-

dimension attractor torus 3  corresponds to a quasi-periodic regime with three 

frequencies [19]. 

However, unlike the Landau’s model of initial turbulence, Ruelle, Takens and 

Newhouse showed that some disturbances could destroy the torus 3 and 

transform it into a chaotic (strange) attractor. It means that the non-stationary 

behaviour of a system (quasiperiodic regime with three frequencies) ceases to be 

stable and it becomes chaotic one. However, unlike the torus 3  a chaotic 

attractor is stable against disturbances acting on the system [19,20]. 

Therefore, according to the RTN theory, the power spectrum of a signal from the 

dynamical system representing the Chua’s circuit as a function of the control 

parameter (Fig. 8) is evolving as follows. After the first Hopf bifurcation, the 

power spectrum contains one frequency, then after the second Hopf bifurcation, 

two frequencies arise. Sometimes, if the third Hopf bifurcation occurs then the 

power spectrum contains three frequencies. However, the third frequency may 



 Chaotic Modeling and Simulation (CMSIM)  1: 55-73, 2020       65 
 

 

 

not be detected before chaos is identified in the circuit [20]. As soon as the third 

frequency appears in the power spectrum, a noise component appears, too. This 

noise component is a feature characterizing the chaos.  

Let us consider previous statements on the simulation that implements the spectral 

analysis of chaotic oscillations in the Chua’s circuit. Figure 8 shows the 

bifurcation diagram, i.e. the dependence of the value of 1  on the control 

parameter .  

To determine the values of   and  , ratios of capacitance and inductance in the 

real-world Chua’s circuit can be used, as shown in [10]. As a result, the chaotic 

mode is observed when 15.6   and 28  . 

 

 

Figure 8 – Bifurcation diagram illustrating the dependence of the value 

1  on the control parameter . 

 

The computer simulation realized by means of the matrix decomposition method 

finds that the “double scroll” (which is defined by the two cycles with the 

frequencies 1  and 2 ) is observed in Chua's circuit. It starts approximately with 

13.8   up to 19.0   (Fig. 8). The figures below (Fig. 9) show the dependence 

of the power spectra of one of the state-space variables  1  on the control 

parameter . Table 3 contains data on the magnitude and frequency of the 

resulting spectral modes (peaks) depending on various values . The data 

obtained on three thousand iterations with *

1 0.75u   . 
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Table 3. Parameters of the peaks on spectrogram. 

9.75   

(fig.6a) 

10    

(fig. 6b) 

11.5   

 (fig. 6c) 

12.3   

 (fig. 6d) 

13.5    

(fig. 6d) 

14     

(fig. 6e) 

Hz dB Hz dB Hz dB Hz dB Hz dB Hz dB 
1763 -

39.4 

1769 -

33.7 

409.5 -

40.4 

196 -

36.6 

447.7 -

27.3 

3585 -

15.2 

5899 -

23.2 

3777 -

36.6 

767.8 -

37.6 

392 -

40.3 

597 -

25.4 

4581 -

17.0 

13520 -

46.7 

5581 -

09.4 

1177 -

32.4 

710.5 -

38.9 

920 -

21.0 

7625 -

27.3 

  7350 -

34.2 

1561 -

24.9 

1397 -

34.0 

1592 -

21.7 

14000 -

40.1 

  9119 -

36.1 

1945 -

34.0 

1593 -

30.2 

3084 -

17.8 

  

  11130 -

27.5 

2329 -

29.1 

2107 -

35.0 

3855 -

13.7 

  

  12930 -

32.2 

3481 -

29.8 

2499 -

30.6 

4104 -

41.0 

  

  14700 -

52.9 

3890 -

22.2 

4116 -

05.6 

8109 -

24.4 

  

  16470 -

37.3 

4326 -

06.3 

8208 -

22.0 

9477 -

32.1 

  

  18480 -

45.0 

8625 -

17.5 

12620 -

33.8 

12060 -

35.4 

  

  20280 -

35.6 

12900 -

31.4 

16880 -

43.0 

    

      19400 -

40.3 

    

 
The attractors corresponding to the periodograms in Fig. 9 are shown in Fig. 10. 
Plots 9 and 10 confirm that the first bifurcation leads to transition from the initial 
steady-state (fixed point) to a periodic state (limit cycle) in the phase state-space 
of Chua’s circuit, and the Hopf second bifurcation transforms the periodic regime 

(with frequency 1 ) to a quasi-periodic regime (with the frequencies 1  and 2

). 
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a) b) 

  

c) d) 

  

e) f) 

Figure 9 –  Periodograms based on FFT of the signal 1v  for the different values 

of  ( Table 2, No. 1): a) 9.75  ; b) 10  ; c) 11.5  ; d) 12.3  ; e) 

13.5  ; f) 14  . 
It is well-known [20] that the function x  (depends on variables 1 2, ,..., rt t t ) is 

called periodical one with the period 2  for each of the arguments if the value of 

function does not change when increasing any of the variables by 2 : 
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1 2 1 2( , ..., ,..., ) ( , ..., 2 ,... ), 1, 2,...j r j rx t t t t x t t t t j r   .            (16) 

Such function is called quasi-periodic in time if all r  variables are proportional 

to time t : 

, 1,..., .j jt t j r                                (17) 

Obviously, the quasiperiodic function has r  fundamental frequencies j  and, 

therefore,  r  periods: 
2

, 1,...,j

j

T j r



   (Fig. 9f). 

  

a) b) 

  

c) d) 

  

e) f) 

Figure 10 – Restored attractors for the different values of  (Table 2, No. 1): 

 a) 9.75  ; b) 10  ; c) 11.5  ; d) 12.3  ; e) 13.5  ; f) 14  . 
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Taking into account the provisions of the RTN theory [18], let us consider the 

simplest case when 2r  . According to the number theory, under the condition 

of irrational ration 1 2/  , any real number is arbitrarily close to one of the sums 

1 1 2 2| |m m  . Consequently, the power spectrum of a quasi-periodic signal with 

two periods (the corresponding attractor is a two-dimensional torus 2  within the 

framework of the RTN theory) is also dense everywhere. However, this does not 

mean that the spectrum can be represented by a continuous function since it would 

correspond to the case of an aperiodic signal. Indeed, two peaks (reasonably close 

to each other on the frequency axis) should not necessarily have close amplitudes 

(Fig. 9a-f). 

To clarify all the features of the quasi-periodic signal power spectrum with 

two frequencies 1  and 2  we use the results of the simulation presented 

in Table 3. The power spectrum of such a quasi-periodic signal is usually 

identified using two fundamental frequencies 1 and 2  which would allow 

representing the frequencies of modes with large amplitude in the form of 

simple combinations 1 1 2 2| |m m  with small values of 1m  and 

2 0, 1, 2,...m     (Fig. 9a). 

The first column of Table 3 and Figure 9a show that the spectral peaks on the 

frequencies 1763 Hz, 5899 Hz and 13520 Hz could be modes with harmonics 

which are multiples of the fundamental frequency 1 1763   Hz with the 

multipliers 1 3m   and 2 7m   respectively. At the same time, spectral "troughs" 

(not presented in Table 3) at the frequencies 1547 Hz, 7 410 Hz, and 14 890 Hz 

and others correspond to the “missing modes” at multiple harmonics of the 

fundamental frequency 1547 Hz. Thus, the power spectrum is lined at the value 

of the control parameter 9.75  , as can be seen in Figure 9a. 

The second column of Table 3 and Figure 6b show a big family of peaks. The 

peaks are multiples of the first fundamental frequency 1 1769  Hz (the control 

value 10  ). The multiple multipliers are 1 2 3 4 52, 3, 4, 5, 6m m m m m    

,…, 10 11m  . 

Further, increasing the control parameter up to 11.5   produces more peaks 

(Figure 6c), especially in the low-frequency domain. The frequency 1561 Hz 

appears on the place where earlier has been the spectral "trough". It can be seen 

that increasing the value of the control parameter from 10   to 11.5   leads 

to halve of the fundamental frequency 1561 Hz a number of times. Peaks at 409.5 

Hz, 767.6 Hz, 1177 Hz have appeared, which is entirely consistent with the well-

known “period doubling” scenario 
1 1

2 2
1 1 /2

( 2 )T T 
 

    [20]. 
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The frequencies of the peaks are multiples ( 1 2 102, 3,..., 11m m m   ) of the 

fundamental frequency 1 409.5  Hz. The peak near the frequency 1792 Hz 

presents too, but in comparison with the previous case, when the peak has been 

observed at 1769 Hz, the magnitude significantly has reduced from -33.65 dB to 

-44.01 dB. 

Finally, when 12.3   the first fundamental frequency 1 409.5  Hz halves 

again and becomes 1 196  Hz. The relative height of former spectral peaks (on 

the frequencies that are multiples to the frequency 409.5 Hz) decreases in 

comparison with a common background of the power spectrum (Fig. 6d). It has 

happened because new modes appeared with the harmonics which are multiples 

of the second fundamental frequency 2 710.5  Hz (for instance, with the 

multiplier 2 3m  , corresponds to the new frequency 2107 Hz). 

Thus, in the case 12.3   the energy redistribution in the power spectrum of a 

quasi-periodic signal with two periods occurs. The redistribution process includes 

energy outflow from spectral modes with the multiple harmonics to the first 

fundamental frequency 1 196  Hz (the “former” first 1 409.5  Hz). It also 

leads to decreasing of the mode’s amplitudes (Fig. 6d) due to energy inflow to the 

spectral modes with harmonics that are multiples of the second fundamental 

frequency 2 710.5  Hz.  

As already noted, at the ratio 2 1/ 3.625    the power spectrum of such a quasi-

periodic signal ( 12.3  ) becomes rather dense, but not continuous. 

Further, increasing the control value to 13.5  leads to appear third 

fundamental frequency 3 447.7  Hz (Fig. 6, e) in the low-frequency area of the 

spectrum. In turn, it leads to gradual alignment (smoothing) of the already existing 

spectral modes in amplitude due to the appearance of the new modes that are 

multiples of the 3 . The RTN theory predicts the Hopf's supercritical third 

bifurcation generating a transition from a quasiperiodic state with two frequencies 

to a quasiperiodic state with three frequencies [19]. The scenario is entirely 

consistent with the computational experiments described above. 

When the value 14  , amplification in the low-frequency area of the spectrum 

near the third fundamental frequency occurs as well as resonant harmonics is 

damping. (Fig. 6f). Thus, the spectrum becomes similar to the spectrum of an 

aperiodic signal, i.e. almost continuous. It  means that  when 14   (in 

particular case, 15.6  ) the chaotic regime in the state-space of Chua’s circuit 

can be observed (Fig. 8).  

Let us note that if the control parameter decreases from 14  to 11.5  , the 

harmonics which are multiple to the fundamental frequencies 2 and 3  begin 
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to disappear due to synchronization between 1 2,   and 3 (the phenomenon of 

frequency pulling) [20]. 

In this case, if the value of   decreases the frequencies 2 and 3  gradually 

increase, so that the ratio, for example 2 3/  , becomes a rational number. It 

means that 2 3 2 3/ /n n   where 2 3,n n are integers. Consequently, the quasi-

periodic signal can become the periodic one with a period 1 2 2 3 3n n     . 

Really, according to (14) we can see that 

1 2 3 1 1 2 2 3 3( , , ) ( 2 , 2 , 2 ).x t t t x t n t n t n           
              (18) 

When frequency synchronization occurs: 2 2 3 3/ /n n  , then all lines of the 

power spectrum are modes with harmonics of the lowest frequency 

32

1

2 3

.
n n


  

                                          (19) 

Substituting (19) in (18) we obtain that quasiperiodic signal becomes periodic 

one: 

1 2 3 1 1 1 2 2 1 3 3 1( , , ) ( 2 , 2 , 2 ) ( )x t t t x t n n t n n t n x t             
      (20)

 

so that the neighbouring lines of the power spectrum are always separated by the 

same distance 12 /   (see, for example, Fig. 9a). 

 

3    Conclusion 

This work describes the application of the method of matrix decomposition 

developed by A.M. Krot for analysis of Chua’s chaotic generator. The method is 

based on the decomposition of vector function in Taylor multiple series. It can be 

also used for analyzing other electronic circuits being in chaotic regimes. This 

approach allows us to split up the original operator of the system of differential 

equations into linear, quadratic and cubic terms with the aim to estimate the 

contribution of each term in whole dynamics of Chua’s circuit. It develops the 

process of circuit analysis by obtaining new data that could not be extracted using 

traditional Chua’s circuit [22]. In particular, it allows us estimating the influence 

of high-order nonlinearities based on the described kernels 
(1)

N NL  , 2

(2)

N N
L


, 3

(3)

N N
L


 . 

The investigation shows that the process of occurrence of chaotic oscillations in 

the Chua’s circuit corresponds to Landau’s model of initial turbulence in full 

accordance with the theory of Ruelle-Takens. Unlike Landau’s model, the new 

set of stationary values *

1u  that provides chaotic dynamics of the circuit has been 

introduced. Combining the control parameters, including the stationary value *

1u

, the double-scroll attractor has been obtained. Using bifurcation and spectral 

analysis, a mechanism of the chaotic regime appearance has been investigated.  
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